
Krunch Pipeline

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

The Need for Krunch Extensibility

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

What it is, and who needs it

• What is “Krunch”?

• Take a buffer for bytes from the protocol

• Turn that buffer into a number

• Find the point in the database to update

• Convert the number into a value

• Eng Units, scale, range, etc

• Smooth it, filter it

• Assess it for alarm threshold violations

• Calculate

• Statistics: min/max/avg/starts/runtime

• Higher order: volume to flow etc

• Trigger other actions

• ACE routines

• Collect to historical

• Replicate to other systems

• PubSub publish

• Why does it need to be extensible?

• Customers and SIs routinely require additional
functionality for processing raw data on its way to the
database

• Examples

• Point replacement: replace the value with another point

• Custom DQ: assess additional criteria and store custom flags on
the point

• Custom Raw Data Manipulations: masking, swapping, validations
that are unique to the field device/protocol

VDB Overrides

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

Today’s Krunch Extensibility

• VDB Overrides

• Well established in the product

• Baseline makes heavy use of this everywhere as part of the fundamental design of
the CMX Realtime database

• Not well documented

• Lots of knowledge in the senior developers however

• Reliance on baseline source

• Low to none: for simple overrides that add something to the start or end of the
baseline process [augment]

• High: for complex overrides that change how baseline does something today
[replace]

• Baseline source is 1 or 2 libraries, >1000 lines each + project/solution files etc.

• When used well, greatly simplifies upgrades

• GRT would have been far worse had they not tried to stay within the VDB override
lane.

• Shell didn’t keep within this lane, and touched everything…

• Product doesn’t make it obvious when overrides are present

• Must know to look for timestamps of binaries etc. to tell if they are not baseline

• Only exposes a small part of the Krunch process

V
D

B

La
ye

r
B

a
se

li
n

e
K

ru
n

ch

Omnicomm

protocol

Proto_krunch()

Krunch_data()

krunch_ana()

v_krunch()

hilochk()

Alarming

Cmx Rep

Baseline Augment

Step1:

Step2:

Step3:

Post-krunch()

Replace

Pre-krunch()

Post-krunch()

Step1a()

step2()

function3a()

Pre-krunch()

Realtime Database

Field Devices

Krunch Pipeline Value Proposition

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

Tomorrow’s Krunch Extensibility

• A modern design, using managed code

• Easier to test, easier to integrate with as a developer

• Based on a new Execution Framework design

• Framework itself will be closed source, as will most of the Krunch Pipeline
itself will be closed source.

• Framework can be used for other sub-systems in the future (alarming, other
CRM, cloud hybrid)

• Pipeline Steps delivered with source

• Each “Step” is a re-factored bit of the current krunch process

• Steps are very small bits of functionality, ~ 30 lines of code in the whole file, of
which 20 are the same for every step.

• No need to provide the whole file, nor to pick and choose bits to hand over to
projects

• Documentation for each Step will only be to a level that compliments the
source provided

• Projects would then start with the source, and build from there

• Product ensures that overrides are obvious

• Stores them in the DATAROOT

• Upgradability

• Custom Steps will have to be re-evaluated as part of the upgrade

• May no longer be required: baseline now has the desired feature

• May need to be changed: other baseline Steps may have changed, and hence the
custom Step will need to accommodate the changes

• Any changes to baseline KP Steps will be captured in the “changes” doc, with
which every FEED should start with a review

• Must I use it?

• For new custom functionality on 2023+: yes

• For existing VDB overrides: nice to have, will make the next upgrade easier

• Benefits to AVEVA

• Eliminates more RED code. Easier to support. No more source code requests.
Instrumentation out of the box for troubleshooting and finger pointing.

• Benefits to SI’s

• Source provided with baseline. Easier to customize. Better support for
troubleshooting.

• Benefits to Customers

• More flexibility in data gathering that can come after project commissioning.
No need to recompile the world, and no forklift upgrades to add new
functionliaty

Expanding the Extensibility of AVEVA™ Enterprise SCADA

Krunch Pipeline – Simplified Overview

Protocol

Data Conditioning

Alarming

Extensibility

Replication

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

Protocol

Extensible Pre-
Processing

Extensible Data
Conditioning

Extensible Alarming

Extensible Post-
Processing

Replication

Enterprise SCADA 2023

• Fine grained
• Changing baseline functionality less intrusive
• Enhancements contained in smaller modules

• MSI installable
• Easier to maintain with existing tools

• Upgradable
• Supported by the product architecture

• Rich SDK
• Example source and IDE integration

Detailed Overview

Krunch Pipeline

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

D
a

ta
V

al
u

e
 P

ip
e

lin
e

D
a

ta
S

tr
ea

m
 P

ip
e

lin
e

%DATADIR%

%DATADIR%

%INSTALLDIR%
O

m
n

ic
o

m
m

V
ir

tu
al

 L
ay

e
r

Li
b

co
m

m
P

ro
to

co
l D

ri
ve

r

Field Device

<proto>_poll()

<proto>_listen()

<proto>_cmd()

<proto>_krunch()

krunch_data()

Prepare for
krunch, find

point/db,
etc.

Message construction, CRC
checking, byte stream
extraction

krunch_ana()

v_krunch()

Convert from buffer to raw,
apply smoothing, convert to
EGU etc.

genana()

HighLowCheck

DeteachHPDB

CMXREP
incoming data

For the analog table, baseline
defines the override of
v_krunch() to be genana()

Replication deadband
check, handoff to
replication queue

No

Realtime DB

AttachHPDB

%INSTALLDIR%

CMXREP

O
m

n
ic

o
m

m

P
ro

to
co

l D
ri

ve
r

<proto>_poll()

<proto>_listen()

<proto>_cmd()

<proto>_krunch()

krunch_data()

AttachHPDB

KrunchAnalogValue

DetachHPDB

ConvertToRawValue

ApplySmoothing

High/Low checking,
Creep / Flatline

Detection,
Alarming, Inhibits,
Supressions, Re-
alarming, calling

collect etc.

AlarmHoldoff

FlatlineDetection

CreepDetection

ConvertToEngUnits

AlarmLimits

AlarmSuppression

Realtime DB
CMXREP

CMXREP
handoff

Step Template

Exposed regions of code
from krunch_ana() that deal

with certain types of
functionality and were

previously not overrideable

ConvertToEngUnits

Context

Context

Context

Context

Context

Context Context

Context

Context

Context

Context

Context

ValueReplacement

Context

CMXREP
handoff

Baseline comes shipped with
overrides in the VDB layer, and
projects are also able to override to
deliver custom functionality

v_fldput()

v_fldget()

v_fnput()

v_create()

Step Template

YesIs a custom
pipeline
defined?

Krunch Pipeline Framework, management
etc. is provided binary only

