
IO Formatting UDO

3/23/2024

The IO Formatting UDO enhances the basic abilities of the User Defined application object. It provides
the ability to insert metadata parsing command into the InputSource and/or OutputDest on the IO
Feature Extension. Scripted functionality has been added to allow IO reference formatting commands
or rules to be added to any IO reference. The Syntax of the rule definition closely resembles the
System.String.Format statement from .Net.

The object contains an Object Wizard that assists with the configuration of where the IO source for this
object will come from.

Object Wizard

· Enable IO Formatting – Selecting this option adds in the Attributes and Scripts needed to make
this feature work. Unselecting this option will remove all the attributes and scripts from the
deployed instances.

· IO Target – this is a choice group that allows you to choose the target of the object’s IO
references that begin with the place holder xDIO.SG. any IO reference that does use this
placeholder will not be directed to this target. If you have multiple targets on the same object,
then any valid DIO.ScanGroup(Topic) can be used as a literal prefix to the MxReference.
Entering an actual DIO.ScanGroup(Topic) will direct that reference to a different target. The
reference can still have formatting rules after this literal target to complete the Item (Attribute)
name construction as required. Settings on the wizard will cause the following behavior.

o IO Devices Tree – will detect which DIClient and ScanGroup (Topic) the object is
assigned to on the IO Devices Tree. This will be used to replace all xDIO.SG. prefixes
on the InputSource or OutputDest.

o PCS IO Source – Allows you to assign a PCS Scope name to the hidden attribute
Me._DIO.Target. The wizard prompts you for this, but you can also write to the attribute
directly. The PCS Scope name will replace all xDIO.SG. prefixes on the InputSource or
OutputDest followed by a colon (:).

o App Object - Allows you to assign an Application Object name to the hidden attribute
Me._DIO.Target. The wizard prompts you for this, but you can also write to the attribute
directly. The object must exist in the same galaxy. The ObjectName will replace all
xDIO.SG. prefixes on the InputSource or OutputDest followed by a dot (.).

o Multi-Galaxy – Allows you to assign an external Galaxy name to the hidden attribute
Me._DIO.Target. The wizard prompts you for this, but you can also write to the
attribute directly. The Galaxy name will replace all xDIO.SG. prefixes on the
InputSource or OutputDest followed by a colon (:).

· Propagate Template Changes – Allows you to use the wizard capability to assign your attributes

Page 1 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

to this Option and then those unlocked formatting rules will propagate to the instances that have this
option selected. The InputSource and/or OutputDest must be Bolded on the Settings pane for
the value to propagate. Only changes to the settings pane will be propagated. Any changes to
the IO Feature Dialog will not be propagated to existing templates and instances as per normal
unlocked attribute behavior. For the rule to be properly evaluated the InputSource and/or
OutputDest must not be locked in a template.

There are seven (7) hidden attributes on this object to support the scripted functionality.

Functionality of the IO Assignment is contained within a single script named scp.IOConfig. The script
has been designed to load the application engine (AE) that it is being hosted on in a way to prevent
overloading the scan period and script execution timeout limit of the AE. There are two local memory
variables assigned during the OnScan section of the script scp.IOConfig. These are:

objPerScan = 50; 'Number of objects allowed to execute at a time. If more than this number are
deployed to a single AE, then the objects greater this number will be queued to be executed once the
number executing drops below this number. A default value of 50 seems to work well.

ioExecTime = 5; 'mSec of engine scan time allowed to process an IO reference. Uses the AE
Engine.ScriptExecutionTimeout.Limit to determine how many attributes of a single object can be
processed each scan of the AE.

The combination of these two values allows large objects to complete without error and having many
objects deployed to a single AE at the same time to not all execute at the same time which could also
overload the AE. This mean that there is a slight delay between deployment and completion of the IO

Me._DIO.ArrayElement Integer Element in the UDT Array to link to, ENTER [x] in
reference format to use. x will be replaced with the
value of this attribute. This can be set via the Wizard
Settings; Scripting can also be used to set this value.

Me. _DIO.BaseReg Integer Base Register to use to offset Attributes reference from.
The {OFF:xxx} rule will add xxx to this value. This can
be set via the Wizard Settings; Scripting can also be
used to set this value.

Me_DIO.ConfigCmd Boolean Command to assign IO References. Setting to true will
trigger the script to run. This can be set via the Wizard
Settings, It can also be triggered manually.

Me. _DIO.SG.Ref Boolean Attribute that holds the DIClient and ScanGroup(Topic)
assigned via the IO Device Tree. This will be set to “---
” after the scripting has been triggered.

Me _DIO.State String State of the Object scripting as it progresses through the
IO assignment process. A state of Done means the
scripting has completed. State can be the following
Prep, Queued, Connect, Connecting, Select, WaitAsync,
Process, Dispose, Done

Me_DIO.Target String Actual Name of Target for IO Connection. Contain the
DIO.SG(Topic) from the IO Device Tree after the logic
completes.

Me._DIO.TargetType String Type of IO Connection (IO DeviceTree , PCS,
AppObject, MultiGalaxy). The wizard sets this value.

Page 2 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

Formatting Rule processing. As an example, during testing 400 objects with 200 IO attributes each
took about 4 minutes to complete processing on a single AE. The status of the Object can be monitored
with Me._DIO.State this will indicate where in the progression of execution the object is. A value
of “Done” means that everything has completed.

For the MxReference of the InputSource and/or OutputDest to validate and not put warnings on the
Instances. A valid target needs to be present in the galaxy to point to. This is the purpose of the
xDIO.SG. prefix being needed. There also must be a DIClient object in the galaxy with this name
(xDIO) and scangroup/topic (SG) configured in it. One was included in the aaPKG file but if this is not
the case then simply create an instance of $DDESuitelinkClient and add a topic to this called SG. You
can leave the ServerNode and ServerName fields blank since this is never to be deployed and doing so
will prevent it from being deployed. If this object xDIO does not exist in the galaxy then all the
instances will validate with warnings, they will still work but the warnings are annoying.

Rule syntax

All rules are enclosed in {} delimiters and are case sensitive for the rule part. The first 2 or 3 characters
of the rule must be in UPPERCASE. The subsequent rule definition after the “:” or”.” are not case
sensitive.

Relative Metadata

Metadata from the model/deployment organization of the object can be included in the MxReference.
These rules are simple 2- or 3-CHARACTER mnemonics enclosed in curly braces {}. The following
table lists the rule syntax and example results that can be expected.

Rule Enhancements

To facilitate the use of Arrayed UDT symbols in the controller (PLC) configuration a place holder rule
of “[x]” can be inserted in the MxReference. For register table-based devices such as RTU,
PowerMeters, and Older PLCs where the items in the table are based on an offset from a defined base
register. The {OFF:x} rule can be used to set an increment from the starting point in
Me._DIO.BaseReg.

Rule Meaning Example Result
{PTN} MyPlatform.Tagname AOS02Platform
{ETN} MyEngine.Tagname AppEngine03
{ATN} MyArea.Tagname TankFarmArea
{AHN} MyArea.HierarchicalName CorpArea.SiteA.Tanks
{ACN} MyArea.ContainedName Tanks
{CTN} MyContainer.Tagname Mxr40536
{CHN} MyContainer.HierarchicalName Tank20304.Mixer
{CCN} MyContainer.ContainedName Mixer
{OTN} Me.Tagname VFD50745
{OHN} Me.HierarchicalName Tank20304.Mixer.VFD
{OCN} Me.ContainedName VFD
{AN} Name of Attribute FlowRate

Rule Meaning Example Result

Page 3 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

Model Relative Attributes

Inclusion of Feature Attributes added to this attribute, inclusion of attribute data from the other
attributes on the Object, or inclusion of attribute data from other objects in the modeled hierarchy. This
set of rules allow the formatting to reference any attribute from the Attribute, Object, Container, and
Area. Using this rule allows formatting information to be placed within the modeled hierarchy as
appropriate eliminating the need to repeat this information on every instance. For example, a common
value can be placed on the Area object and referenced with {ATN.AttribtueName}.

Relative Metadata Parsing

Relative metadata commands allow you to parse the individual metadata available to a specific object
attribute. The basic format of the parsing rule is {AAA:x(,y)}Where:

AAA is the 2- or 3-character name of the metadata value.
x will return the first x characters, -x will return the last x characters from the string.
y will return the number of characters from the x position within the string. This value is optional. y
can also be the keyword END which means include everything from the x position to the end of the
string.

[x] Insert the value of Me._DIO.ArrayElement
(ex:12) between the [] brackets

[12]

{OFF:7} Add a numerical value to the Me._DIO.BaseReg
(eg:40100)

40107

Rule Meaning Example Result
{AN.FeatureAttr} Insert the Feature Value for this Attribute.

Any value from the features added to this
attribute can be added to the MxReference.
Place the FeatureAttrName after {AN. And
before the closing curly brace (})

{AN.RawMax}
2000.0

{Me.AttrName} Insert the value of Me.AttrName as a string
into the MxReference. Any Attribute name
on this object can be placed after the {Me.
and before the closing curly brace.

{Me.OpcUaHdr}
MCSConnection.PLC

{OTN.AttrName} Insert the value of OTN.AttrName as a string
into the MxReference. This is identical to
the {Me.xx} rule. Any Attribute name on
this object can be placed after the {OTN. and
before the closing curly brace.

{OTN.OpcUaHdr}
MCSConnection.PLC

{CTN.AttrName} Insert the attribute value from the Container
Object as a string into the MxReference.
Any Attribute name on the container object
can be placed after the {CTN. and before the
closing curly brace.

{CTN.MQTTPrefix}

{ATN.AttrName} Insert the attribute value from the Area
Object as a string into the MxReference.
Any Attribute name on the area object can be
placed after the {ATN. and before the
closing curly brace.

{ATN.OutStation}
MainOS.Substation

Page 4 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

Given a Tagname of Reactor40020_002 the following rules would yield the results of:

{OTN:7} - Reactor
{OTN:-3} - 002
{OTN:8,5} - 40020
{OTN:-6,2} - 20

Given an Area Hierarchy Name of USArea.West.California

{AHN:7,END} - West.California

This function has been enabled for

Deployment considerations and cascading changes from templates

Deploying the instances to existing runtime instances that were previously deployed will need to have
to option of Preserve Runtime Changes be unchecked if a new rule is to be applied to the attribute.
New attributes will have their rules process correctly, but existing ones will use the existing references
that the previous rule resolved to if Preserve Runtime Changes is checked on deployment.

Since the InputSource and the OutputDest contents must be writable at runtime they cannot be locked
on the $Templates. As such when changes are made to the rules of existing attributes on the IO Feature
dialog these changes will not propagate down the derivation tree to the existing child objects. New
Templates or Instances created after the change will have the current setting, but existing Templates or
Instances will have the setting that existed when they were created.

A Wizard Option: Propagate Template Changes, will facilitate the propagation of unlocked attributes
to child instances. This works by associating the attribute to this wizard option. In the Settings pane
the attribute values that need to be propagated can be bolded with an X on them. An enter key typed on
the setting value will flag this setting to be propagated. Remove the trimming checkbox to prevent
these associated attributes from being trimmed from the deployed instance.

Examples

Examples of InputSource and OutputDest rules from given senarios:

1. The device has a fixed modbus register as in an ION Power Meter. The Target is IO Device Tree

Rule Meaning
{ATN:x(,y)} MyArea.Tagname
{AHN:x(,y)} MyArea.HierarchicalName
{ACN:x(,y)} MyArea.ContainedName
{CTN:x(,y)} MyContainer.Tagname
{CHN:x(,y)} MyContainer.HierarchicalName
{CCN:x(,y)} MyContainer.ContainedName
{OTN:x(,y)} Me.Tagname
{OHN:x(,y)} Me.HierarchicalName
{OCN:x(,y)} Me.ContainedName
{AN:x(,y)} Me.AttributeName

Page 5 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

and the DIClient Object is PMSvr with a Topic of MixerPM. The rule would be as follows:

a. Item Needed:

i. 40011

b. Object Model:

i. Mixer
PowerMeter

VIn_a – Attribute

c. Target Type: IO Device Tree
Target: PMSvr.MixerPM

d. IO Format Rule

i. xDIO.SG.40011

e. Result:

i. PMSvr.MixerPM.40011

2. The device has a flat symbol naming definition. The symbol we want is Tank04MixerStartCmd.
The object model is hierarchical. The Target is ABCIP.TankPLC. The rule would be as follows:

a. Item Needed:

i. Tank04MixerStartCmd

b. Object Model:

i. Tank04 – Container object.
 MTR004[Mixer] – Contained object.

StartCmd – Attribute name.

c. Target Type: IO Device Tree
Target: ABCIP.TankPLC

d. IO Format Rule

i. xDIO.SG.{CTN}{OCN}{AN}

e. Result:

i. ABCIP.TankPLC.Tank04MixerStartCmd

3. The Device has a Function Block that has a Base Register of 40100. This attribute is offset from the
base by 17 and is a 2-register integer. The Target is IO Device Tree and the DIClient Object is
MBTCP with a Topic of PLC4 The rule would be as follows:

Page 6 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

a. Item Needed:

i. 40117 I

b. Object Model:

i. FuncBlk
 Attribute

c. Target Type: IO Device Tree
Target: MBTCP.PLC4

d. IO FormatRule

i. xDIO.SG.{OFF:17} I

e. Result:

i. MBTCP.PLC4.40117 I

4. The Device has an UDT with the Name of MixerVFD and the Element we want is SpeedRef.

a. Item Needed:

i. MixerVFD.SpeedRef

b. Object Model:

i. Mixer005
 VFD40305[VFD]

SpeedRef - Attribute Name

c. Target Type: IO Device Tree
Target: ABCIP.PLC2

d. IO Format Rule

i. xDIO.SG.{CTN:5}{OCN}.{AN}

1. First 5 characters of the Container Tagname (Mixer}
Object ContainedName (VFD)
. as a literal character
AttributeName (SpeedRef)

e. Result:

i. ABCIP.PLC2.MixerVFD.SpeedRef

5. The Device has an UDT Array with the Name of Mixers. There is a sub UDT called VFD and the
Element we want is SpeedRef. The Array Element is 7. Here the object model names are close but

Page 7 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

not exactly correct. Parsing is used to fix the naming. Literal characters are inserted to give the correct
item name.

a. Item Needed:

i. Mixers[007].VFD.SpeedRef

b. Object Model:

i. Mixer007
 VFD40305[VFD]

SpeedRef - Attribute Name

c. Target Type: IO Device Tree
Target: ABCIP.PLC2

d. IO Format Rule

i. xDIO.SG.{CTN:5}s[{CTN:-3}].{OCN}.{AN}

e. Result:

i. ABCIP.PLC2.Mixers[007].VFD.SpeedRef

6. The PLC has an array of Power Meters with a UDT structure, one of the elements in the UDT is
PhaseAVoltage. The array element we need is 27. The symbol name in the PLC is PowerMeter.
The array element must be explicitly configured. The attribute name needs to be rearranged and
characters removed.

a. Item Needed:

i. PM[27].PhaseAVoltage

b. Object Model:

i. Mixer – Container Asset.
 PM20321[PM] – Contained object.

Voltage.PhaseA – Attribute name.
 _DIO.ArrayElement = 27

c. Target Type: IO Device Tree
Target: M580.Fast

d. IO Format Rule

i. xDIO.SG.{OCN}[x]{AN:7}{AN.-6}

e. Result:

i. M580.Fast.PM[27].PhaseAVoltage

Page 8 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

7. The Device is linked to the AVEVA Telemetry Server on PCS with a scope name of
Telem_Server_TSNODE. The data point is a dynamic one and is an Analog Input. It has scaling of
ZS:0.0, FS:2000.0, DB:2.0. Outstation Full Name in the Telemetry Server is
West.California.LakeOrville Point Number is 3.

To create an dynamic Analog Input (AI) reference with:

· a point number 3,

· a Zero Scale (ZS) equals to 0,

· a Full Scale (FS) equals to 2000,

· a Deadband (DB) of 10 percent,

· and reference ([Point-Name]) as Level

Telem_Server_<Scope-Name>:%<Outstation-Full-Name>;<Point-Type>;<Point-
Number>;ZS<Value>;FS<Value>;DB<Value>;[<Point-Name>]

a. Item Needed:

i. %West.California.LakeOrville;AI;3;ZS0.0;FS2000.0;DB2.0;[Level]

b. Object Model:

i. USArea - Area
WestArea[West] - Area

CaliforniaArea[California] - Area
 Orville - Object
 Dam203[Dam] - Object
 Level – Attribute
 Scaling – Feature

RawMin = 0.0
RawMax = 2000.0

 Deadband = 2.0

c. Target Type: PCS Source
Target: Telem_Server_TSNODE

d. IO Format Rule

i. xDIO.SG.%{AHN:7,END}.Lake{CTN};AI;3;ZS{AN.RawMin};FS
{AN.RawMax};DB{AN.Deadband};[{AN}]

e. Result:

i. Telem_Server_TSNode:%West.California.LakeOrville;AI;3;ZS0.0;FS2000.0;DB2.0;
[Level]

Page 9 of 9User Defined

9/5/2024file:///C:/Program%20Files%20(x86)/ArchestrA/Framework/FileRepository/Pepsi_DEV/Ob...

